Two-Stage Training of Graph Neural Networks for Graph Classification

نویسندگان

چکیده

Graph neural networks (GNNs) have received massive attention in the field of machine learning on graphs. Inspired by success networks, a line research has been conducted to train GNNs deal with various tasks, such as node classification, graph and link prediction. In this work, our task interest is classification. Several GNN models proposed shown great accuracy task. However, question whether usual training methods fully realize capacity models. we propose two-stage framework based triplet loss. first stage, trained map each Euclidean-space vector so that graphs same class are close while those different classes mapped far apart. Once well-separated labels, classifier distinguish between classes. This method generic sense it compatible any model. By adapting five method, demonstrate consistent improvement utilization GNN’s allocated over original model up $$5.4\%$$ points 12 datasets.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

dynamic coloring of graph

در این پایان نامه رنگ آمیزی دینامیکی یک گراف را بیان و مطالعه می کنیم. یک –kرنگ آمیزی سره ی رأسی گراف g را رنگ آمیزی دینامیکی می نامند اگر در همسایه های هر رأس v?v(g) با درجه ی حداقل 2، حداقل 2 رنگ متفاوت ظاهر شوند. کوچکترین عدد صحیح k، به طوری که g دارای –kرنگ آمیزی دینامیکی باشد را عدد رنگی دینامیکی g می نامند و آنرا با نماد ?_2 (g) نمایش می دهند. مونت گمری حدس زده است که تمام گراف های منتظم ...

15 صفحه اول

Graph Classification with 2D Convolutional Neural Networks

Graph learning is currently dominated by graph kernels, which, while powerful, suffer some significant limitations. Convolutional Neural Networks (CNNs) offer a very appealing alternative, but processing graphs with CNNs is not trivial. To address this challenge, many sophisticated extensions of CNNs have recently been introduced. In this paper, we reverse the problem: rather than proposing yet...

متن کامل

Bootstrapping Graph Convolutional Neural Networks for Autism Spectrum Disorder Classification

Using predictive models to identify patterns that can act as biomarkers for different neuropathoglogical conditions is becoming highly prevalent. In this paper, we consider the problem of Autism Spectrum Disorder (ASD) classification. While non-invasive imaging measurements, such as the rest state fMRI, are typically used in this problem, it can be beneficial to incorporate a wide variety of no...

متن کامل

Graph Partition Neural Networks for Semi-Supervised Classification

We present graph partition neural networks (GPNN), an extension of graph neural networks (GNNs) able to handle extremely large graphs. GPNNs alternate between locally propagating information between nodes in small subgraphs and globally propagating information between the subgraphs. To efficiently partition graphs, we experiment with several partitioning algorithms and also propose a novel vari...

متن کامل

Learning Graph While Training: An Evolving Graph Convolutional Neural Network

Convolution Neural Networks on Graphs are important generalization and extension of classical CNNs. While previous works generally assumed that the graph structures of samples are regular with unified dimensions, in many applications, they are highly diverse or even not well defined. Under some circumstances, e.g. chemical molecular data, clustering or coarsening for simplifying the graphs is h...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Neural Processing Letters

سال: 2022

ISSN: ['1573-773X', '1370-4621']

DOI: https://doi.org/10.1007/s11063-022-10985-5